
CHAPTER 2:

ALGORITHM ANALYSIS

An algorithm is a clearly specified set of simple instructions to be followed to

solve a problem. Once an algorithm is given for a problem and decided (somehow)

to be correct, an important step is to determine how much in the way of

resources, such as time or space, the algorithm will require. An algorithm that

solves a problem but requires a year is hardly of any use. Likewise, an algorithm

that requires a gigabyte of main memory is not (currently) useful.

In this chapter, we shall discuss

 How to estimate the time required for a program.

 How to reduce the running time of a program from days or years to fractions

of a second.

 The results of careless use of recursion.

 Very efficient algorithms to raise a number to a power and to compute the

greatest common divisor of two numbers.

2.1. Mathematical Background

The analysis required to estimate the resource use of an algorithm is generally a

theoretical issue, and therefore a formal framework is required. We begin with

some mathematical definitions.

Throughout the book we will use the following four definitions:

DEFINITION: T(n) = O(f(n)) if there are constants c and n

0

such that T(n) cf

(n) when n n

0

.

DEFINITION: T(n) = (g(n)) if there are constants c and n

0

 such that T(n)

cg(n) when n n

0

.

DEFINITION: T(n) = (h(n)) if and only if T(n) = O(h(n)) and T(n) = (h(n)).

DEFINITION: T(n) = o(p(n)) if T(n) = O(p(n)) and T(n) (p(n)).

Next ChapterReturn to Table of ContentsPrevious Chapter

页码，1/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The idea of these definitions is to establish a relative order among functions.

Given two functions, there are usually points where one function is smaller than

the other function, so it does not make sense to claim, for instance, f(n) < g

(n). Thus, we compare their relative rates of growth. When we apply this to the

analysis of algorithms, we shall see why this is the important measure.

Although 1,000n is larger than n

2

for small values of n, n

2

grows at a faster

rate, and thus n

2

will eventually be the larger function. The turning point is n

= 1,000 in this case. The first definition says that eventually there is some

point n

0

 past which c f (n) is always at least as large as T(n), so that if

constant factors are ignored, f(n) is at least as big as T(n). In our case, we

have T(n) = 1,000n, f(n) = n

2

, n

0

 = 1,000, and c = 1. We could also use n

0

= 10

and c = 100. Thus, we can say that 1,000n = O(n

2

) (order n-squared). This

notation is known as Big-Oh notation. Frequently, instead of saying "order . . .

," one says "Big-Oh"

If we use the traditional inequality operators to compare growth rates, then the

first definition says that the growth rate of T(n) is less than or equal to (

) that of f(n). The second definition, T(n) = (g(n)) (pronounced "omega"),

says that the growth rate of T(n) is greater than or equal to () that of g

(n). The third definition, T(n) = (h(n)) (pronounced "theta"), says that the

growth rate of T(n) equals (=) the growth rate of h(n). The last definition, T

(n) = o(p(n)) (pronounced "little-oh"), says that the growth rate of T(n) is less

than (<) the growth rate of p(n). This is different from Big-Oh, because Big-Oh

allows the possibility that the growth rates are the same.

To prove that some function T(n) = O(f(n)), we usually do not apply these

definitions formally but instead use a repertoire of known results. In general,

this means that a proof (or determination that the assumption is incorrect) is a

very simple calculation and should not involve calculus, except in extraordinary

circumstances (not likely to occur in an algorithm analysis).

When we say that T(n) = O(f(n)), we are guaranteeing that the function T(n) grows

at a rate no faster than f(n); thus f(n) is an upper bound on T(n). Since this

implies that f(n) = (T(n)), we say that T(n) is a lower bound on f(n).

As an example, n

3

grows faster than n

2

, so we can say that n

2

= O(n

3

) or n

3

 =

(n

2

). f(n) = n

2

 and g(n) = 2n

2

grow at the same rate, so both f(n) = O(g(n)) and

f(n) = (g(n)) are true. When two functions grow at the same rate, then the

decision whether or not to signify this with () can depend on the particular

context. Intuitively, if g(n) = 2n

2

, then g(n) = O(n

4

), g(n) = O(n

3

), and g(n) =

O(n

2

) are all technically correct, but obviously the last option is the best

answer. Writing g(n) = (n

2

) says not only that g(n) = O(n

2

), but also that

页码，2/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

the result is as good (tight) as possible.

The important things to know are

RULE 1:

If T
1

(n) = O(f(n)) and T
2

(n) = O(g(n)), then

(a) T
1

(n) + T
2

(n) = max (O(f(n)), O(g(n))),

(b) T
1

(n) * T
2

(n) = O(f(n) * g(n)),

Function Name

 c Constant

 logn Logarithmic

 log
2

n Log-squared

 n Linear

 n log n

 n
2

Quadratic

 n
3

Cubic

 2
n

Exponential

Figure 2.1 Typical growth rates

RULE 2:

If T(x) is a polynomial of degree n, then T(x) = (x

n

).

RULE 3:

log

k

n = O(n) for any constant k. This tells us that logarithms grow very slowly.

To see that rule 1(a) is correct, note that by definition there exist four

constants c

1

, c

2

, n

1

, and n

2

such that T

1

(n) c

1

f(n) for n n

1

and T

2

(n)

 c

2

g(n) for n n

2

. Let n

0

 = max(n

1

, n

2

). Then, for n n

0

, T

1

(n) c

1

f

(n) and T

2

(n) c

2

g(n), so that T

1

(n) + T

2

(n) c

1

f(n) + c

2

g(n). Let c

3

 = max

(c

1

, c

2

). Then,

页码，3/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 T
1

(n) + T
2

(n) c
3

f(n) + c
3

g(n)

 c
3

(f(n) + g(n))

 2c
3

max(f(n), g(n))

 c max(f(n), g(n))

for c = 2c

3

 and n n

0

.

We leave proofs of the other relations given above as exercises for the reader.

This information is sufficient to arrange most of the common functions by growth

rate (see Fig. 2.1).

Several points are in order. First, it is very bad style to include constants or

low-order terms inside a Big-Oh. Do not say T(n) = O(2n

2

) or T(n) = O(n

2

+ n). In

both cases, the correct form is T(n) = O(n

2

). This means that in any analysis

that will require a Big-Oh answer, all sorts of shortcuts are possible. Lower-

order terms can generally be ignored, and constants can be thrown away.

Considerably less precision is required in these cases.

Secondly, we can always determine the relative growth rates of two functions f(n)

and g(n) by computing lim

n

f(n)/g(n), using L'Hôpital's rule if

necessary.*

*L'Hôpital's rule states that if lim
n f(n) = and lim

n g(n) =

, then lim

n f(n)/g(n) = lim

n

f'(n) / g'(n), where f'(n) and g'(n)

are the derivatives of f(n) and g(n), respectively.

The limit can have four possible values:

 The limit is 0: This means that f(n) = o(g(n)).

 The limit is c 0: This means that f(n) = (g(n)).

 The limit is : This means that g(n) = o(f(n)).

 The limit oscillates: There is no relation (this will not happen in our

context).

页码，4/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Using this method almost always amounts to overkill. Usually the relation between

f(n) and g(n) can be derived by simple algebra. For instance, if f(n) = n log n

and g(n) = n

1.5

, then to decide which of f(n) and g(n) grows faster, one really

needs to determine which of log n and n

0.5

grows faster. This is like determining

which of log

2

n or n grows faster. This is a simple problem, because it is

already known that n grows faster than any power of a log. Thus, g(n) grows

faster than f(n).

One stylistic note: It is bad to say f(n) O(g(n)), because the inequality is

implied by the definition. It is wrong to write f(n) O(g(n)), which does not

make sense.

2.2. Model

In order to analyze algorithms in a formal framework, we need a model of

computation. Our model is basically a normal computer, in which instructions are

executed sequentially. Our model has the standard repertoire of simple

instructions, such as addition, multiplication, comparison, and assignment, but,

unlike real computers, it takes exactly one time unit to do anything (simple). To

be reasonable, we will assume that, like a modern computer, our model has fixed

size (say 32-bit) integers and that there are no fancy operations, such as matrix

inversion or sorting, that clearly cannot be done in one time unit. We also

assume infinite memory.

This model clearly has some weaknesses. Obviously, in real life, not all

operations take exactly the same time. In particular, in our model one disk read

counts the same as an addition, even though the addition is typically several

orders of magnitude faster. Also, by assuming infinite memory, we never worry

about page faulting, which can be a real problem, especially for efficient

algorithms. This can be a major problem in many applications.

2.3. What to Analyze

The most important resource to analyze is generally the running time. Several

factors affect the running time of a program. Some, such as the compiler and

computer used, are obviously beyond the scope of any theoretical model, so,

although they are important, we cannot deal with them here. The other main

factors are the algorithm used and the input to the algorithm.

Typically, the size of the input is the main consideration. We define two

functions, T

avg

(n) and T

worst

(n), as the average and worst-case running time,

respectively, used by an algorithm on input of size n. Clearly, T

avg

(n)

T

worst

(n). If there is more than one input, these functions may have more than

one argument.

We remark that generally the quantity required is the worst-case time, unless

otherwise specified. One reason for this is that it provides a bound for all

页码，5/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

input, including particularly bad input, that an average-case analysis does not

provide. The other reason is that average-case bounds are usually much more

difficult to compute. In some instances, the definition of "average" can affect

the result. (For instance, what is average input for the following problem?)

As an example, in the next section, we shall consider the following problem:

MAXIMUM SUBSEQUENCE SUM PROBLEM:

Given (possibly negative) integers a

1

, a

2

, . . . , a

n

, find the maximum value of

. (For convenience, the maximum subsequence sum is 0 if all the integers

are negative.)

Example:

For input -2, 11, -4, 13, -5, -2, the answer is 20 (a

2

 through a

4

).

This problem is interesting mainly because there are so many algorithms to solve

it, and the performance of these algorithms varies drastically. We will discuss

four algorithms to solve this problem. The running time on some computer (the

exact computer is unimportant) for these algorithms is given in Figure 2.2.

There are several important things worth noting in this table. For a small amount

of input, the algorithms all run in a blink of the eye, so if only a small amount

of input is expected, it might be silly to expend a great deal of effort to

design a clever algorithm. On the other hand, there is a large market these days

for rewriting programs that were written five years ago based on a no-longer-

valid assumption of small input size. These programs are now too slow, because

they used poor algorithms. For large amounts of input, Algorithm 4 is clearly the

best choice (although Algorithm 3 is still usable).

Second, the times given do not include the time required to read the input. For

Algorithm 4, the time merely to read in the input from a disk is likely to be an

order of magnitude larger than the time required to solve the problem. This is

typical of many efficient algorithms. Reading the data is generally the

bottleneck; once the data are read, the problem can be solved quickly. For

inefficient algorithms this is not true, and significant computer resources must

be used. Thus, it is important that, where possible, algorithms be efficient

enough not to be the bottleneck of a problem.

 Algorithm 1 2 3 4

-------------------- -----------------------------------

 Time O(n
3

) O(n
2

) O(n log n) (n)

--

 Input n = 10 0.00103 0.00045 0.00066 0.00034

 Size n = 100 0.47015 0.01112 0.00486 0.00063

页码，6/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 n = 1,000 448.77 1.1233 0.05843 0.00333

 n = 10,000 NA 111.13 0.68631 0.03042

 n = 100,000 NA NA 8.0113 0.29832

Figure 2.2 Running time of several algorithms for maximum subsequence sum (in

seconds)

Figure 2.3 shows the growth rates of the running times of the four algorithms.

Even though this graph encompasses only values of n ranging from 10 to 100, the

relative growth rates are still evident. Although the graph for Algorithm 3 seems

linear, it is easy to verify that it is not, by using a straightedge (or piece of

paper). Figure 2.4 shows the performance for larger values. It dramatically

illustrates how useless inefficient algorithms are for even moderately large

amounts of input.

Figure 2.3 Plot (n vs. milliseconds) of various maximum subsequence sum

algorithms

Figure 2.4 Plot (n vs. seconds) of various maximum subsequence sum algorithms

页码，7/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

2.4. Running Time Calculations

There are several ways to estimate the running time of a program. The previous

table was obtained empirically. If two programs are expected to take similar

times, probably the best way to decide which is faster is to code them both up

and run them!

Generally, there are several algorithmic ideas, and we would like to eliminate

the bad ones early, so an analysis is usually required. Furthermore, the ability

to do an analysis usually provides insight into designing efficient algorithms.

The analysis also generally pinpoints the bottlenecks, which are worth coding

carefully.

To simplify the analysis, we will adopt the convention that there are no

particular units of time. Thus, we throw away leading constants. We will also

throw away low-order terms, so what we are essentially doing is computing a Big-

Oh running time. Since Big-Oh is an upper bound, we must be careful to never

underestimate the running time of the program. In effect, the answer provided is

a guarantee that the program will terminate within a certain time period. The

program may stop earlier than this, but never later.

2.4.1. A Simple Example

Here is a simple program fragment to calculate

unsigned int

sum(int n)

{

unsigned int i, partial_sum;

/*1*/ partial_sum = 0;

/*2*/ for(i=1; i<=n; i++)

/*3*/ partial_sum += i*i*i;

/*4*/ return(partial_sum);

}

The analysis of this program is simple. The declarations count for no time. Lines

1 and 4 count for one unit each. Line 3 counts for three units per time executed

(two multiplications and one addition) and is executed n times, for a total of 3n

units. Line 2 has the hidden costs of initializing i, testing i n, and

incrementing i. The total cost of all these is 1 to initialize, n + 1 for all the

tests, and n for all the increments, which is 2n + 2. We ignore the costs of

calling the function and returning, for a total of 5n + 4. Thus, we say that this

function is O (n).

页码，8/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

If we had to perform all this work every time we needed to analyze a program, the

task would quickly become infeasible. Fortunately, since we are giving the answer

in terms of Big-Oh, there are lots of shortcuts that can be taken without

affecting the final answer. For instance, line 3 is obviously an O (1) statement

(per execution), so it is silly to count precisely whether it is two, three, or

four units -- it does not matter. Line 1 is obviously insignificant compared to

the for loop, so it is silly to waste time here. This leads to several obvious

general rules.

2.4.2. General Rules

RULE 1-FOR LOOPS:

The running time of a for loop is at most the running time of the statements

inside the for loop (including tests) times the number of iterations.

RULE 2-NESTED FOR LOOPS:

Analyze these inside out. The total running time of a statement inside a group of

nested for loops is the running time of the statement multiplied by the product

of the sizes of all the for loops.

As an example, the following program fragment is O(n

2

):

for(i=0; i<n; i++)

for(j=0; j<n; j++)

k++;

RULE 3-CONSECUTIVE STATEMENTS:

These just add (which means that the maximum is the one that counts -- see 1(a)

on page 16).

As an example, the following program fragment, which has O(n) work followed by O

(n

2

) work, is also O (n

2

):

for(i=0; i<n; i++)

a[i] = 0;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

a[i] += a[j] + i + j;

RULE 4-lF/ELSE:

For the fragment

if(cond)

页码，9/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

S1

else

S2

the running time of an if/else statement is never more than the running time of

the test plus the larger of the running times of S1 and S2.

Clearly, this can be an over-estimate in some cases, but it is never an under-

estimate.

Other rules are obvious, but a basic strategy of analyzing from the inside (or

deepest part) out works. If there are function calls, obviously these must be

analyzed first. If there are recursive procedures, there are several options. If

the recursion is really just a thinly veiled for loop, the analysis is usually

trivial. For instance, the following function is really just a simple loop and is

obviously O (n):

unsigned int

factorial(unsigned int n)

{

if(n <= 1)

return 1;

else

return(n * factorial(n-1));

}

This example is really a poor use of recursion. When recursion is properly used,

it is difficult to convert the recursion into a simple loop structure. In this

case, the analysis will involve a recurrence relation that needs to be solved. To

see what might happen, consider the following program, which turns out to be a

horrible use of recursion:

/* Compute Fibonacci numbers as described Chapter 1 */

unsigned int

fib(unsigned int n)

{

/*1*/ if(n <= 1)

/*2*/ return 1;

else

页码，10/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*3*/ return(fib(n-1) + fib(n-2));

}

At first glance, this seems like a very clever use of recursion. However, if the

program is coded up and run for values of n around 30, it becomes apparent that

this program is terribly inefficient. The analysis is fairly simple. Let T(n) be

the running time for the function fib(n). If n = 0 or n = 1, then the running

time is some constant value, which is the time to do the test at line 1 and

return. We can say that T(0) = T(1) = 1, since constants do not matter. The

running time for other values of n is then measured relative to the running time

of the base case. For n > 2, the time to execute the function is the constant

work at line 1 plus the work at line 3. Line 3 consists of an addition and two

function calls. Since the function calls are not simple operations, they must be

analyzed by themselves. The first function call is fib(n - 1) and hence, by the

definition of T, requires T(n - 1) units of time. A similar argument shows that

the second function call requires T(n - 2) units of time. The total time required

is then T(n - 1) + T(n - 2) + 2, where the 2 accounts for the work at line 1 plus

the addition at line 3. Thus, for n 2, we have the following formula for the

running time of fib(n):

T(n) = T(n - 1) + T(n - 2) + 2

Since fib(n) = fib(n - 1) + fib(n - 2), it is easy to show by induction that T(n)

 fib(n). In Section 1.2.5, we showed that fib(n) < (5/3)

. A similar

calculation shows that fib(n) (3/2)

, and so the running time of this

program grows exponentially. This is about as bad as possible. By keeping a

simple array and using a for loop, the running time can be reduced substantially.

This program is slow because there is a huge amount of redundant work being

performed, violating the fourth major rule of recursion (the compound interest

rule), which was discussed in Section 1.3. Notice that the first call on line 3,

fib(n - 1), actually computes fib(n - 2) at some point. This information is

thrown away and recomputed by the second call on line 3. The amount of

information thrown away compounds recursively and results in the huge running

time. This is perhaps the finest example of the maxim "Don't compute anything

more than once" and should not scare you away from using recursion. Throughout

this book, we shall see outstanding uses of recursion.

2.4.3 Solutions for the Maximum Subsequence Sum

Problem

We will now present four algorithms to solve the maximum subsequence sum problem

posed earlier. The first algorithm is depicted in Figure 2.5. The indices in the

for loops reflect the fact that, in C, arrays begin at 0, instead of 1. Also, the

algorithm computes the actual subsequences (not just the sum); additional code is

required to transmit this information to the calling routine.

Convince yourself that this algorithm works (this should not take much). The

页码，11/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

running time is O(n

) and is entirely due to lines 5 and 6, which consist of an O

(1) statement buried inside three nested for loops. The loop at line 2 is of size

n.

int

max_subsequence_sum(int a[], unsigned int n)

{

int this_sum, max_sum, best_i, best_j, i, j, k;

/*1*/ max_sum = 0; best_i = best_j = -1;

/*2*/ for(i=0; i<n; i++)

/*3*/ for(j=i; j<n; j++)

{

/*4*/ this_sum=0;

/*5*/ for(k = i; k<=j; k++)

/*6*/ this_sum += a[k];

/*7*/ if(this_sum > max_sum)

{ /* update max_sum, best_i, best_j */

/*8*/ max_sum = this_sum;

/*9*/ best_i = i;

/*10*/ best_j = j;

}

}

/*11*/ return(max_sum);

}

Figure 2.5 Algorithm 1

The second loop has size n - i + 1, which could be small, but could also be of

size n. We must assume the worst, with the knowledge that this could make the

final bound a bit high. The third loop has size j - i + 1, which, again, we must

assume is of size n. The total is O(1 n n n) = O(n

). Statement 1

takes only O(1) total, and statements 7 to 10 take only O(n

) total, since they

are easy statements inside only two loops.

It turns out that a more precise analysis, taking into account the actual size of

页码，12/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

these loops, shows that the answer is (n

), and that our estimate above was a

factor of 6 too high (which is all right, because constants do not matter). This

is generally true in these kinds of problems. The precise analysis is obtained

from the sum 1, which tells how many times line 6 is executed.

The sum can be evaluated inside out, using formulas from Section 1.2.3. In

particular, we will use the formulas for the sum of the first n integers and

first n squares. First we have

Next we evaluate

This sum is computed by observing that it is just the sum of the first n - i + 1

integers. To complete the calculation, we evaluate

We can avoid the cubic running time by removing a for loop. Obviously, this is

not always possible, but in this case there are an awful lot of unnecessary

computations present in the algorithm. The inefficiency that the improved

algorithm corrects can be seen by noticing that so the

computation at lines 5 and 6 in Algorithm 1 is unduly expensive. Figure 2.6 shows

an improved algorithm. Algorithm 2 is clearly O(n

); the analysis is even simpler

than before.

There is a recursive and relatively complicated O(n log n) solution to this

problem, which we now describe. If there didn't happen to be an O(n) (linear)

solution, this would be an excellent example of the power of recursion. The

algorithm uses a "divide-and-conquer" strategy. The idea is to split the problem

into two roughly equal subproblems, each of which is half the size of the

original. The subproblems are then solved recursively. This is the "divide" part.

The "conquer" stage consists of patching together the two solutions of the

subproblems, and possibly doing a small amount of additional work, to arrive at a

solution for the whole problem.

int

max_subsequence_sum(int a[], unsigned int n)

页码，13/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

int this_sum, max_sum, best_i, best_j, i, j, k;

/*1*/ max_sum = 0; best_i = best_j = -1;

/*2*/ for(i=0; i<n; i++)

{

/*3*/ this_sum = 0;

/*4*/ for(j=i; j<n; j++)

{

/*5*/ this_sum += a[j];

/*6*/ if(this_sum > max_sum)

/* update max_sum, best_i, best_j */;

}

}

/*7*/ return(max_sum);

}

Figure 2.6 Algorithm 2

In our case, the maximum subsequence sum can be in one of three places. Either it

occurs entirely in the left half of the input, or entirely in the right half, or

it crosses the middle and is in both halves. The first two cases can be solved

recursively. The last case can be obtained by finding the largest sum in the

first half that includes the last element in the first half and the largest sum

in the second half that includes the first element in the second half. These two

sums can then be added together. As an example, consider the following input:

 First Half Second Half

--

 4 -3 5 -2 -1 2 6 -2

The maximum subsequence sum for the first half is 6 (elements a

1

 through a

3

), and

for the second half is 8 (elements a

6

 through a

7

).

The maximum sum in the first half that includes the last element in the first

half is 4 (elements a

1

 through a

4

), and the maximum sum in the second half that

includes the first element in the second half is 7 (elements a

5

 though a

7

). Thus,

the maximum sum that spans both halves and goes through the middle is 4 + 7 = 11

(elements a

1

 through a

7

).

页码，14/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

We see, then, that among the three ways to form a large maximum subsequence, for

our example, the best way is to include elements from both halves. Thus, the

answer is 11. Figure 2.7 shows an implementation of this strategy.

int

max_sub_sequence_sum(int a[], unsigned int n)

{

return max_sub_sum(a, 0, n-1);

}

int

max_sub_sum(int a[], int left, int right)

{

int max_left_sum, max_right_sum;

int max_left_border_sum, max_right_border_sum;

int left_border_sum, right_border_sum;

int center, i;

/*1*/ if (left == right) /* Base Case */

/*2*/ if(a[left] > 0)

/*3*/ return a[left];

else

/*4*/ return 0;

/*5*/ center = (left + right)/2;

/*6*/ max_left_sum = max_sub_sum(a, left, center);

/*7*/ max_right_sum = max_sub_sum(a, center+1, right);

/*8*/ max_left_border_sum = 0; left_border_sum = 0;

/*9*/ for(i=center; i>=left; i--)

{

/*10*/ left_border_sum += a[i];

/*11*/ if(left_border_sum > max_left_border_sum)

/*12*/ max_left_border_sum = left_border_sum;

页码，15/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

}

/*13*/ max_right_border_sum = 0; right_border_sum = 0;

/*14*/ for(i=center+1; i<=right; i++)

{

/*15*/ right_border_sum += a[i];

/*16*/ if(right_border_sum > max_right_border_sum)

/*17*/ max_right_border_sum = right_border_sum;

}

/*18*/ return max3(max_left_sum, max_right_sum,

max_left_border_sum + max_right_border_sum);

}

Figure 2.7 Algorithm 3

The code for Algorithm 3 deserves some comment. The general form of the call for

the recursive procedure is to pass the input array along with the left and right

borders, which delimit the portion of the array that is operated upon. A one-line

driver program sets this up by passing the borders 0 and n -1 along with the

array.

Lines 1 to 4 handle the base case. If left == right, then there is one element,

and this is the maximum subsequence if the element is nonnegative. The case left

> right is not possible unless n is negative (although minor perturbations in the

code could mess this up). Lines 6 and 7 perform the two recursive calls. We can

see that the recursive calls are always on a smaller problem than the original,

although, once again, minor perturbations in the code could destroy this

property. Lines 8 to 12 and then 13 to 17 calculate the two maximum sums that

touch the center divider. The sum of these two values is the maximum sum that

spans both halves. The pseudoroutine max3 returns the largest of the three

possibilities.

Algorithm 3 clearly requires more effort to code than either of the two previous

algorithms. However, shorter code does not always mean better code. As we have

seen in the earlier table showing the running times of the algorithms, this

algorithm is considerably faster than the other two for all but the smallest of

input sizes.

The running time is analyzed in much the same way as for the program that

computes the Fibonacci numbers. Let T(n) be the time it takes to solve a maximum

subsequence sum problem of size n. If n = 1, then the program takes some constant

amount of time to execute lines 1 to 4, which we shall call one unit. Thus, T(1)

= 1. Otherwise, the program must perform two recursive calls, the two for loops

between lines 9 and 17, and some small amount of bookkeeping, such as lines 5 and

18. The two for loops combine to touch every element from a

0

 to a

n_1

, and there

页码，16/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

is constant work inside the loops, so the time expended in lines 9 to 17 is O(n).

The code in lines 1 to 5, 8, and 18 is all a constant amount of work and can thus

be ignored when compared to O(n). The remainder of the work is performed in lines

6 and 7. These lines solve two subsequence problems of size n/2 (assuming n is

even). Thus, these lines take T(n/2) units of time each, for a total of 2T(n/2).

The total time for the algorithm then is 2T(n/2) + O(n). This gives the equations

T(1) = 1

T(n) = 2T(n/2) + O(n)

To simplify the calculations, we can replace the O(n) term in the equation above

with n; since T(n) will be expressed in Big-Oh notation anyway, this will not

affect the answer. In Chapter 7, we shall see how to solve this equation

rigorously. For now, if T(n) = 2T(n/2) + n, and T(1) = 1, then T(2) = 4 = 2 * 2,

T(4) = 12 = 4 * 3, T(8) = 32 = 8 * 4, T(16) = 80 = 16 * 5. The pattern that is

evident, and can be derived, is that if n = 2

, then T(n) = n * (k + 1) = n log n

+ n = O(n log n).

This analysis assumes n is even, since otherwise n/2 is not defined. By the

recursive nature of the analysis, it is really valid only when n is a power of 2,

since otherwise we eventually get a subproblem that is not an even size, and the

equation is invalid. When n is not a power of 2, a somewhat more complicated

analysis is required, but the Big-Oh result remains unchanged.

In future chapters, we will see several clever applications of recursion. Here,

we present a fourth algorithm to find the maximum subsequence sum. This algorithm

is simpler to implement than the recursive algorithm and also is more efficient.

It is shown in Figure 2.8.

int

max_subsequence_sum(int a[], unsigned int n)

{

int this_sum, max_sum, best_i, best_j, i, j;

/*1*/ i = this_sum = max_sum = 0; best_i = best_j = -1;

/*2*/ for(j=0; j<n; j++)

{

/*3*/ this_sum += a[j];

/*4*/ if(this_sum > max_sum)

{ /* update max_sum, best_i, best_j */

/*5*/ max_sum = this_sum;

/*6*/ best_i = i;

/*7*/ best_j = j;

页码，17/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

}

else

/*8*/ if(this_sum < 0)

{

/*9*/ i = j + 1;

/*10*/ this_sum = 0;

}

}

/*11*/ return(max_sum);

}

Figure 2.8 Algorithm 4

It should be clear why the time bound is correct, but it takes a little thought

to see why the algorithm actually works. This is left to the reader. An extra

advantage of this algorithm is that it makes only one pass through the data, and

once a[i] is read and processed, it does not need to be remembered. Thus, if the

array is on a disk or tape, it can be read sequentially, and there is no need to

store any part of it in main memory. Furthermore, at any point in time, the

algorithm can correctly give an answer to the subsequence problem for the data it

has already read (the other algorithms do not share this property). Algorithms

that can do this are called on-line algorithms. An on-line algorithm that

requires only constant space and runs in linear time is just about as good as

possible.

2.4.4 Logarithms in the Running Time

The most confusing aspect of analyzing algorithms probably centers around the

logarithm. We have already seen that some divide-and-conquer algorithms will run

in O(n log n) time. Besides divide-and-conquer algorithms, the most frequent

appearance of logarithms centers around the following general rule: An algorithm

is O(log n) if it takes constant (O(1)) time to cut the problem size by a

fraction (which is usually). On the other hand, if constant time is required

to merely reduce the problem by a constant amount (such as to make the problem

smaller by 1), then the algorithm is O(n).

Something that should be obvious is that only special kinds of problems can be O

(log n). For instance, if the input is a list of n numbers, an algorithm must

take (n) merely to read the input in. Thus when we talk about O(log n)

algorithms for these kinds of problems, we usually presume that the input is

preread. We provide three examples of logarithmic behavior.

Binary Search

页码，18/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The first example is usually referred to as binary search:

BINARY SEARCH:

Given an integer x and integers a

1

, a

2

, . . . , a

n

, which are presorted and

already in memory, find i such that a

i

 = x, or return i = 0 if x is not in the

input.

The obvious solution consists of scanning through the list from left to right and

runs in linear time. However, this algorithm does not take advantage of the fact

that the list is sorted and is thus not likely to be best. The best strategy is

to check if x is the middle element. If so, the answer is at hand. If x is

smaller than the middle element, we can apply the same strategy to the sorted

subarray to the left of the middle element; likewise, if x is larger than the

middle element, we look to the right half. (There is also the case of when to

stop.) Figure 2.9 shows the code for binary search (the answer is mid). As usual,

the code reflects C's convention that arrays begin with index 0. Notice that the

variables cannot be declared unsigned (why?). In cases where the unsigned

qualifier is questionable, we will not use it. As an example, if the unsigned

qualifier is dependent on an array not beginning at zero, we will discard it.

We will also avoid using the unsigned type for variables that are counters in a

for loop, because it is common to change the direction of a loop counter from

increasing to decreasing and the unsigned qualifier is typically appropriate for

the former case only. For example, the code in Exercise 2.10 does not work if i

is declared unsigned.

Clearly all the work done inside the loop is O(1) per iteration, so the analysis

requires determining the number of times around the loop. The loop starts with

high - low = n - 1 and finishes with high - low -1. Every time through the

loop the value high - low must be at least halved from its previous value; thus,

the number of times around the loop is at most log(n - 1) + 2. (As an

example, if high - low = 128, then the maximum values of high - low after each

iteration are 64, 32, 16, 8, 4, 2, 1, 0, -1.) Thus, the running time is O(log n).

Equivalently, we could write a recursive formula for the running time, but this

kind of brute-force approach is usually unnecessary when you understand what is

really going on and why.

Binary search can be viewed as our first data structure. It supports the find

operation in O(log n) time, but all other operations (in particular insert)

require O(n) time. In applications where the data are static (that is, insertions

and deletions are not allowed), this could be a very useful data structure. The

input would then need to be sorted once, but afterward accesses would be fast. An

example could be a program that needs to maintain information about the periodic

table of elements (which arises in chemistry and physics). This table is

relatively stable, as new elements are added infrequently. The element names

could be kept sorted. Since there are only about 110 elements, at most eight

accesses would be required to find an element. Performing a sequential search

would require many more accesses.

int

页码，19/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

binary_search(input_type a[], input_type x, unsigned int n)

{

int low, mid, high; /* Can't be unsigned; why? */

/*1*/ low = 0; high = n - 1;

/*2*/ while(low <= high)

{

/*3*/ mid = (low + high)/2;

/*4*/ if(a[mid] < x)

/*5*/ low = mid + 1;

else

/*6*/ if (a[mid] < x)

/*7*/ high = mid - 1;

else

/*8*/ return(mid); /* found */

}

/*9*/ return(NOT_FOUND);

}

Figure 2.9 Binary search.

Euclid's Algorithm

A second example is Euclid's algorithm for computing the greatest common divisor.

The greatest common divisor (gcd) of two integers is the largest integer that

divides both. Thus, gcd (50, 15) = 5. The algorithm in Figure 2.10 computes gcd

(m, n), assuming m n. (If n > m, the first iteration of the loop swaps

them).

The algorithm works by continually computing remainders until 0 is reached. The

last nonzero remainder is the answer. Thus, if m = 1,989 and n = 1,590, then the

sequence of remainders is 399, 393, 6, 3, 0. Therefore, gcd (1989, 1590) = 3. As

the example shows, this is a fast algorithm.

As before, the entire running time of the algorithm depends on determining how

long the sequence of remainders is. Although log n seems like a good answer, it

is not at all obvious that the value of the remainder has to decrease by a

constant factor, since we see that the remainder went from 399 to only 393 in the

example. Indeed, the remainder does not decrease by a constant factor in one

页码，20/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

iteration. However, we can prove that after two iterations, the remainder is at

most half of its original value. This would show that the number of iterations is

at most 2 log n = O(log n) and establish the running time. This proof is easy, so

we include it here. It follows directly from the following theorem.

unsigned int

gcd(unsigned int m, unsigned int n)

{

unsigned int rem;

/*1*/ while(n > 0)

{

/*2*/ rem = m % n;

/*3*/ m = n;

/*4*/ n = rem;

}

/*5*/ return(m);

}

Figure 2.10 Euclid's algorithm.

THEOREM 2.1.

If m > n, then mmod n < m/2.

PROOF:

There are two cases. If n m/2, then obviously, since the remainder is

smaller than n, the theorem is true for this case. The other case is n > m/2. But

then n goes into m once with a remainder m - n < m/2, proving the theorem.

One might wonder if this is the best bound possible, since 2 log n is about 20

for our example, and only seven operations were performed. It turns out that the

constant can be improved slightly, to roughly 1.44 log n, in the worst case

(which is achievable if m and n are consecutive Fibonacci numbers). The average-

case performance of Euclid's algorithm requires pages and pages of highly

sophisticated mathematical analysis, and it turns out that the average number of

iterations is about .

Exponentiation

Our last example in this section deals with raising an integer to a power (which

is also an integer). Numbers that result from exponentiation are generally quite

页码，21/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

large, so an analysis only works if we can assume that we have a machine that can

store such large integers (or a compiler that can simulate this). We will count

the number of multiplications as the measurement of running time.

int

pow(int x, unsigned int n)

{

/*1*/ if(n == 0)

/*2*/ return 1;

/*1*/ if(n == 1)

/*4*/ return x;

/*5*/ if(even(n))

/*6*/ return(pow(x
*

x, n/2));

else

/*7*/ return(pow(x
*

x, n/2) * x);

}

Figure 2.11 Efficient exponentiation

The obvious algorithm to compute x

n

 uses n - 1 multiples. The recursive algorithm

in Figure 2.11 does better. Lines 1 to 4 handle the base case of the recursion.

Otherwise, if n is even, we have x

n

 = x

n/2

 . x

n/2

, and if n is odd, x

= x

(n-1)/2

 x

(n-1)/2

 x.

For instance, to compute x

62

, the algorithm does the following calculations,

which involves only nine multiplications:

x
3

 = (x
2

)x, x
7

 = (x
3

)
2

x, x
15

 = (x
7

)
2

x, x
31

 = (x
15

)
2

x, x
62

 = (x
31

)
2

The number of multiplications required is clearly at most 2 log n, because at most two

multiplications (if n is odd) are required to halve the problem. Again, a recurrence formula can

be written and solved. Simple intuition obviates the need for a brute-force approach.

It is sometimes interesting to see how much the code can be tweaked without affecting

correctness. In Figure 2.11, lines 3 to 4 are actually unnecessary, because if n is 1, then line

7 does the right thing. Line 7 can also be rewritten as

/*7*/ return(pow(x, n-1)

*

 x);

without affecting the correctness of the program. Indeed, the program will still run in O(log n),

because the sequence of multiplications is the same as before. However, all of the following

alternatives for line 6 are bad, even though they look correct:

页码，22/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*6a*/ return(pow(pow(x, 2), n/2));

/*6b*/ return(pow(pow(x, n/2), 2));

/*6c*/ return(pow(x, n/2) * pow(x, n/2));

Both lines 6a and 6b are incorrect because when n is 2, one of the recursive calls to pow has 2

as the second argument. Thus, no progress is made, and an infinite loop results (in an eventual

crash).

Using line 6c affects the efficiency, because there are now two recursive calls of size n/2

instead of only one. An analysis will show that the running time is no longer O(log n). We leave

it as an exercise to the reader to determine the new running time.

2.4.5 Checking Your Analysis

Once an analysis has been performed, it is desirable to see if the answer is correct and as good

as possible. One way to do this is to code up the program and see if the empirically observed

running time matches the running time predicted by the analysis. When n doubles, the running time

goes up by a factor of 2 for linear programs, 4 for quadratic programs, and 8 for cubic programs.

Programs that run in logarithmic time take only an additive constant longer when n doubles, and

programs that run in O(n log n) take slightly more than twice as long to run under the same

circumstances. These increases can be hard to spot if the lower-order terms have relatively large

coefficients and n is not large enough. An example is the jump from n = 10 to n = 100 in the

running time for the various implementations of the maximum subsequence sum problem. It also can

be very difficult to differentiate linear programs from O(n log n) programs purely on empirical

evidence.

Another commonly used trick to verify that some program is O(f(n)) is to compute the values T(n)/

f(n) for a range of n (usually spaced out by factors of 2), where T(n) is the empirically

observed running time. If f(n) is a tight answer for the running time, then the computed values

converge to a positive constant. If f(n) is an over-estimate, the values converge to zero. If f

(n) is an under-estimate and hence wrong, the values diverge.

As an example, the program fragment in Figure 2.12 computes the probability that two distinct

positive integers, less than or equal to n and chosen randomly, are relatively prime. (As n gets

large, the answer approaches 6/

2

.)

You should be able to do the analysis for this program instantaneously. Figure 2.13 shows the

actual observed running time for this routine on a real computer. The table shows that the last

column is most likely, and thus the analysis that you should have gotten is probably correct.

Notice that there is not a great deal of difference between O(n

2

) and O(n

2

log n), since

logarithms grow so slowly.

2.4.6. A Grain of Salt

Sometimes the analysis is shown empirically to be an over-estimate. If this is the case, then

either the analysis needs to be tightened (usually by a clever observation), or it may be the

case that the average running time is significantly less than the worst-case running time and no

improvement in the bound is possible. There are many complicated algorithms for which the worst-

case bound is achievable by some bad input but is usually an over-estimate in practice.

Unfortunately, for most of these problems, an average-case analysis is extremely complex (in many

cases still unsolved), and a worst-case bound, even though overly pessimistic, is the best

analytical result known.

rel = 0; tot = 0;

for(i=1; i<=n; i++)

页码，23/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

for(j=i+1; j<=n; j++)

{

tot++;

if(gcd(i, j) = 1)

rel++;

}

printf("Percentage of relatively prime pairs is %lf\n",

((double) rel)/tot);

Figure 2.12 Estimate the probability that two random numbers are relatively prime

 n CPU time (T) T/n

2

T/n

3

T/n

2

log n

 100 022 .002200 .000022000 .0004777

 200 056 .001400 .000007000 .0002642

 300 118 .001311 .000004370 .0002299

 400 207 .001294 .000003234 .0002159

 500 318 .001272 .000002544 .0002047

 600 466 .001294 .000002157 .0002024

 700 644 .001314 .000001877 .0002006

 800 846 .001322 .000001652 .0001977

 900 1,086 .001341 .000001490 .0001971

 1,000 1,362 .001362 .000001362 .0001972

 1,500 3,240 .001440 .000000960 .0001969

 2,000 5,949 .001482 .000000740 .0001947

 4,000 25,720 .001608 .000000402 .0001938

Figure 2.13 Empirical running times for previous routine

Summary

This chapter gives some hints on how to analyze the complexity of programs. Unfortunately, it is

not a complete guide. Simple programs usually have simple analyses, but this is not always the

case. As an example, we shall see, later in the text, a sorting algorithm (Shellsort, Chapter 7)

and an algorithm for maintaining disjoint sets (Chapter 8) each of which requires about 20 lines

页码，24/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

of code. The analysis of Shellsort is still not complete, and the disjoint set algorithm has an

analysis that is extremely difficult and requires pages and pages of intricate calculations. Most

of the analysis that we will encounter here will be simple and involve counting through loops.

An interesting kind of analysis, which we have not touched upon, is lowerbound analysis. We will

see an example of this in Chapter 7, where it is proved that any algorithm that sorts by using

only comparisons requires (n log n) comparisons in the worst case. Lower-bound proofs are

generally the most difficult, because they apply not to an algorithm but to a class of algorithms

that solve a problem.

We close by mentioning that some of the algorithms described here have real-life application. The

gcd algorithm and the exponentiation algorithm are both used in cryptography. Specifically, a

200-digit number is raised to a large power (usually another 200-digit number), with only the low

200 or so digits retained after each multiplication. Since the calculations require dealing with

200-digit numbers, efficiency is obviously important. The straightforward algorithm for

exponentiation would require about 10

200

 multiplications, whereas the algorithm presented

requires only about 1,200.

Exercises

2.1 Order the following functions by growth rate: n, , n

1.5

, n

2

, n log n, n log log n, n log

2

n, n log(n

2

), 2/n, 2

, 2

n/2

, 37, n

2

log n, n

3

. Indicate which functions grow at the same rate.

2.2 Suppose T

l

(n) = O(f(n)) and T

2

(n) = O(f(n)). Which of the following are true?

a. T

1

(n) + T

2

(n) = O(f(n))

b. T

1

(n) - T

2

(n) = o(f(n))

d. T

1

(n) = O(T

2

(n))

2.3 Which function grows faster: n log n or n

1+

/

 > 0 ?

2.4 Prove that for any constant, k, log

k

n = o(n).

2.5 Find two functions f(n) and g(n) such that neither (n) = O(g(n)) nor g(n) = O(f(n)).

2.6 For each of the following six program fragments:

a. Give an analysis of the running time (Big-Oh will do).

b. Implement the code in the language of your choice, and give the running time for several

values of n.

页码，25/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

c. Compare your analysis with the actual running times.

(1) sum = 0;

for(i=0; i<n; i++)

sum++;

(2) sum = 0;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

sum++;

(3) sum = 0;

for(i=0; i<n; i++)

for(j=0; j<n*n; j++)

sum++;

(4) sum = 0;

for(i=0; i<n; i++)

for(j=0; j<i; j++)

sum++;

(5) sum = 0;

for(i=0; i<n; i++)

for(j=0; j<i*i; j++)

for(k=0; k<j; k++)

sum++;

(6) sum = 0;

for(i=1; i<n; i++)

for(j=1; j<i*i; j++)

if(j%1 == 0)

for(k=0; k<j; k++)

sum++;

2.7 Suppose you need to generate a random permutation of the first n integers. For example, {4,

3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but {5, 4, 1, 2, 1} is not, because one

number (1) is duplicated and another (3) is missing. This routine is often used in simulation of

algorithms. We assume the existence of a random number generator, rand_int(i, j), which generates

integers between i and j with equal probability. Here are three algorithms:

1. Fill the array a from a[0] to a[n - 1] as follows: To fill a[i], generate random numbers until

you get one that is not already in a[0], a[1], a[2], . . . , a[i-1].

页码，26/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

2. Same as algorithm (1), but keep an extra array called the used array. When a random number,

ran, is first put in the array a, set used[ran] = 1. This means that when filling a[i] with a

random number, you can test in one step to see whether the random number has been used, instead

of the (possibly) i steps in the first algorithm.

3. Fill the array such that a[i] = i + 1. Then

for(i=1; i<n; i++)

swap(&a[i], &a[rand_int(0, i)]);

a. Prove that all three algorithms generate only legal permutations and that all permutations are

equally likely.

b. Give as accurate (Big-Oh) an analysis as you can of the expected running time of each

algorithm.

c. Write (separate) programs to execute each algorithm 10 times, to get a good average. Run

program (1) for n = 250, 500, 1,000, 2,000; program (2) for n = 2,500, 5,000, 10,000, 20,000,

40,000, 80,000, and program (3) for n = 10,000, 20,000, 40,000, 80,000, 160,000, 320,000,

640,000.

d. Compare your analysis with the actual running times.

e. What is the worst-case running time of each algorithm?

2.8 Complete the table in Figure 2.2 with estimates for the running times that were too long to

simulate. Interpolate the running times for these algorithms and estimate the time required to

compute the maximum subsequence sum of one million numbers. What assumptions have you made?

2.9 How much time is required to compute

a. using a simple routine to perform exponentiation?

b. using the routine in Section 2.4.4?

2.10 Consider the following algorithm (known as Horner's rule) to evaluate

poly = 0;

for(i=n; i>=0; i--)

poly = x * poly + a

i

a. Show how the steps are performed by this algorithm for x = 3, f(x) = 4x

+ 8x

+ x + 2.

b. Explain why this algorithm works.

c. What is the running time of this algorithm?

2.11 Give an efficient algorithm to determine if there exists an integer i such that a

i

 = i in an

array of integers a

1

 < a

2

 < a

3

 < . . . < a

n

. What is the running time of your algorithm?

2.12 Give efficient algorithms (along with running time analyses) to

页码，27/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

a. find the minimum subsequence sum

*b. find the minimum positive subsequence sum

*c. find the maximum subsequence product

2.13 a. Write a program to determine if a positive integer, n, is prime.

b. In terms of n, what is the worst-case running time of your program? (You should be able to do

this in .)

c. Let B equal the number of bits in the binary representation of n. What is the value of B?

d. In terms of B, what is the worst-case running time of your program?

e. Compare the running times to determine if a 20-bit and a 40-bit number are prime.

f. Is it more reasonable to give the running time in terms of n or B? Why?

*2.14 The Sieve of Erastothenes is a method used to compute all primes less than n. We begin by

making a table of integers 2 to n. We find the smallest integer, i, that is not crossed out,

print i, and cross out i, 2i, 3i, When the algorithm terminates. What is the

running time of this algorithm?

2.15 Show that x

62

 can be computed with only eight multiplications.

2.16 Write the fast exponentiation routine without recursion.

2.17 Give a precise count on the number of multiplication used by the fast exponentiation

routine. (Hint: Consider the binary representation of n.)

2.18 Programs A and B are analyzed and found to have worst-case running times no greater than

150n log

2

 n and n

2

, respectively. Answer the following questions if possible:

a. Which program has the better guarantee on the running time, for large values of n (n >

10,000)?

b. Which program has the better guarantee on the running time, for small values of n (n < 100)?

c. Which program will run faster on average for n = 1,000?

d. Is it possible that program B will run faster than program A on all possible inputs ?

2.19 A majority element in an array, A, of size n is an element that appears more than n/2 times

(thus, there is at most one). For example, the array

3, 3, 4, 2, 4, 4, 2, 4, 4

has a majority element (4), whereas the array

3, 3, 4, 2, 4, 4, 2, 4

does not. If there is no majority element, your program should indicate this. Here is a sketch of

an algorithm to solve the problem:

页码，28/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

First, a candidate majority element is found (this is the harder part). This candidate is the

only element that could possibly be the majority element. The second step determines if this

candidate is actually the majority. This is just a sequential search through the array. To find a

candidate in the array, A, form a second array, B. Then compare A

1

 and A

2

. If they are equal, add

one of these to B; otherwise do nothing. Then compare A

3

 and A

4

. Again if they are equal, add one

of these to B; otherwise do nothing. Continue in this fashion until the entire array is read.

Then recursively find a candidate for B; this is the candidate for A (why?.

a. How does the recursion terminate?

*b. How is the case where n is odd handled?

*c. What is the running time of the algorithm?

d. How can we avoid using an extra array B?

*e. Write a program to compute the majority element.

*2.20 Why is it important to assume that integers in our computer model have a fixed size?

2.21 Consider the word puzzle problem described in Chapter 1. Suppose we fix the size of the

longest word to be 10 characters.

a. In terms of r and c, which are the number of rows and columns in the puzzle, and W, which is

the number of words, what is the running time of the algorithms described in Chapter 1?

b. Suppose the word list is presorted. Show how to use binary search to obtain an algorithm with

significantly better running time.

2.22 Suppose that line 5 in the binary search routine had the expression low = mid instead of low

= mid + 1. Would the routine still work?

2.23 Suppose that lines 6 and 7 in Algorithm 3 (Fig. 2.7) are replaced by

/*6*/ max_left_sum = max_sub_sum(a, left, center-1);

/*7*/ max_right_sum = max_sub_sum(a, center, right);

Would the routine still work?

*2.24 The inner loop of the cubic maximum subsequence sum algorithm performs n(n + 1)(n + 2)/6

iterations of the innermost code. The quadratic version performs n(n + 1)/2 iterations. The

linear version performs n iterations. What pattern is evident? Can you give a combinatoric

explanation of this phenomenon?

References

Analysis of the running time of algorithms was first made popular by Knuth in the three-part

series [5], [6], and [7]. The analysis of the gcd algorithm appears in [6]. Another early text on

the subject is [1].

Big-Oh, big-omega, big-theta, and little-oh notation were advocated by Knuth in [8]. There is

still not a uniform agreement on the matter, especially when it comes to using (). Many

people prefer to use O(), even though it is less expressive. Additionally, O() is still used in

页码，29/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

some corners to express a lower bound, when () is called for.

The maximum subsequence sum problem is from [3]. The series of books [2], [3], and [4] show how

to optimize programs for speed.

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, Mass., 1974.

2. J. L. Bentley, Writing Efficient Programs, Prentice Hall, Englewood Cliffs, N.J., 1982.

3. J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, Mass., 1986.

4. J. L. Bentley, More Programming Pearls, Addison-Wesley, Reading, Mass., 1988.

5. D. E. Knuth, The Art of Computer Programming, Vol 1: Fundamental Algorithms, 2d ed., Addison-

Wesley, Reading, Mass., 1973.

6. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, 2d ed.,

Addison-Wesley, Reading, Mass., 1981.

7. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, Addison-Wesley,

Reading, Mass., 1975.

8. D. E. Knuth, "Big Omicron and Big Omega and Big Theta," ACM SIGACT News, 8 (1976), 18-23.

Go to

Chapter 3 Return to Table of Contents

页码，30/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

